Nicotinic stimulation produces multiple forms of increased glutamatergic synaptic transmission.
نویسندگان
چکیده
Synaptic modulation and long-term synaptic changes are thought to be the cellular correlates for learning and memory (Madison et al., 1991; Aiba et al., 1994, Goda and Stevens, 1996). The hippocampus is a center for learning and memory that receives abundant cholinergic innervation and has a high density of nicotinic acetylcholine receptors (nAChRs) (Wada et al., 1989; Woolf, 1991). We report that stro ng, brief stimulation of nAChRs enhanced hippocampal glutamatergic synaptic transmission on two independent time scales and altered the relationship between consecutively evoked synaptic currents. The nicotinic synaptic enhancement required extracellular calcium and was produced by the activation of presynaptic alpha7-containing nAChRs. Although one form of glutamatergic enhancement lasted only for seconds, another form lasted for minutes after the nicotinic stimulation had ceased and the nicotinic agonist had been washed away. The synaptic enhancement lasting minutes suggests that nAChR activity can initiate calcium-dependent mechanisms that are known to induce glutamatergic synaptic plasticity. The results with evoked synaptic currents showed that nAChR activity can alter the relationship between the incoming presynaptic activity and outgoing postsynaptic signaling along glutamatergic fibers. Thus, the same information arriving along the same glutamatergic afferents will be processed differently when properly timed nicotinic activity converges onto the glutamatergic presynaptic terminals. Influencing information processing at glutamatergic synapses may be one way in which nicotinic cholinergic activity influences cognitive processes. Disruption of these nicotinic cholinergic mechanisms may contribute to the deficits associated with the degeneration of cholinergic functions during Alzheimer's disease.
منابع مشابه
Modulation of Basal Glutamatergic Transmission by Nicotinic Acetylcholine Receptors in Rat Hippocampal Slices
Objective(s) Nicotinic acetylcholine receptors (nAChRs) regulate epileptiform activity and produce a sustained pro-epileptogenic action within the hippocampal slices. In the present study, we investigated the effect of nAChRs on evoked glutamatergic synaptic transmission in area CA3 and CA1 of rat hippocampal slices to identify possible excitatory circuits through which activation of nAChRs pr...
متن کاملCentral cholinesterase inhibition enhances glutamatergic synaptic transmission.
Central cholinergic overstimulation results in prolonged seizures of status epilepticus in humans and experimental animals. Cellular mechanisms of underlying seizures caused by cholinergic stimulation remain uncertain, but enhanced glutamatergic transmission is a potential mechanism. Paraoxon, an organophosphate cholinesterase inhibitor, enhanced glutamatergic transmission on hippocampal granul...
متن کاملShort- and long-term enhancement of excitatory transmission in the spinal cord dorsal horn by nicotinic acetylcholine receptors.
Spinal administration of nicotinic agonists can produce both hyperalgesic and analgesic effects in vivo. The cellular mechanisms underlying these behavioral phenomena are not understood. As a possible explanation for nicotinic hyperalgesia, we tested whether nicotinic acetylcholine receptors (nAChRs) could enhance excitatory transmission onto spinal cord dorsal horn neurons. Whole-cell patch-cl...
متن کاملFacilitation of cortico-amygdala synapses by nicotine: activity-dependent modulation of glutamatergic transmission.
The basolateral nucleus of the amygdala (BLA) receives cholinergic innervation from the basal forebrain and nicotine, via activation of neuronal nicotinic acetylcholine receptors (nAChRs), can improve performance in amygdala-based learning tasks. We tested the hypothesis that acute and prenatal nicotine exposure modulates cortico-amygdala synaptic transmission. We found that low-dose, single-tr...
متن کاملNicotine-induced enhancement of glutamatergic and GABAergic synaptic transmission in the mouse amygdala.
Presynaptic nicotinic acetylcholine receptors (nAChRs) are thought to mediate some of the cognitive and behavioral effects of nicotine. The olfactory projection to the amygdala, and intra-amygdaloid projections, are limbic relays involved in behavioral reinforcement, a property influenced by nicotine. Co-cultures consisting of murine olfactory bulb (OB) explants and dispersed amygdala neurons w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 18 18 شماره
صفحات -
تاریخ انتشار 1998